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Abstract 

 This dissertation describes three new applications of inductively coupled plasma mass 

spectrometry (ICP-MS).   

Arsenic content was measured in rice and coffee samples. These results for the 

concentration of arsenic in rice and coffee independently verify the results of a similar FDA 

study. Direct comparisons of the arsenic content in different types of rice (i.e. black, brown, 

jasmine) indicated no correlation in the amount of arsenic and the type of rice. Additionally, 

the rice and coffee samples were cultivated in different locations throughout the world and 

results were analyzed to discern any trends between the amount of arsenic and the country of 

origin. 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is used 

to measure the trace elemental composition of various well-known brands of duct and 

electrical tapes. A new method derived from existing chemometric principles (principal 

components analysis) for identifying which elements vary the most between the brands of 

tape is described. The new method is applied to measurements collected from duct and 

electrical tapes and they are compared to one another.  

Pigments from a ship which sank off the coast of Texas in 1684 were recently 

recovered. ICP-MS was used to perform elemental analysis on these samples to identify the 

type of pigment. These pigments were suspected to be products for trade with natives in the 

new world. As was common at the time, the pigments were also suspected of adulteration 

(being cut with a cheaper product); they were analyzed for evidence of such a practice.  

ICP-MS is one of the most sensitive useful tools for elemental analysis. Knowing the 

exact composition of various samples using this technique can help scientists assist in setting 
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new public safety standards in the present, provide new techniques for the future, and learn 

about life in the past. The three applications highlight the versatility of ICP-MS to a 

broadening number of different scientific disciplines.
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Chapter 1. Introduction 

ICP-MS 

Intro and General Advantages 

 Inductively coupled plasma mass spectrometry (ICP-MS) is one of the most powerful, 

sensitive, and versatile techniques for elemental analysis. It is used for a number of different 

applications in various scientific disciplines including forensics,
 1

 geology,
 2

 archaeology,
 3, 4 

environmental chemistry,
 5

 semiconductors,
 6

 and nanomaterials.
 7

  One of the main 

advantages of this instrument over other chemical analysis techniques is its ability to achieve 

accurate and precise ultra-trace measurements of multiple elements in a variety of samples. 

Detection limits for ICP-MS are commonly in the low part-per-billion (ng/g) to parts-per-

trillion (pg/g) range depending on the background signal and the element of interest. ICP-MS 

also has the distinct advantage of exhibiting a large dynamic range. Additionally, the ability 

of ICP-MS to detect element signals from Li to U in the periodic table makes this a versatile 

technique for elemental analysis.  

 

Inductively Coupled Plasma 

 Figure 1 is a schematic of an inductively coupled plasma torch. The ICP is an 

atmospheric ionization source which vaporizes, atomizes and ionizes samples at high 

temperatures (5000-8000 K).
 8, 9

 Argon is generally the gas used to create the plasma as it has 

a high ionization potential energy (15.76 eV),
 10

 is inert, and does not readily form complex 

molecular ions with sample matter in the plasma. The plasma is created and shaped by the 

ICP torch. Fused quartz was chosen as the material for the torch because it has a low 
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coefficient of thermal expansion (5.5×10
−7

/°C) and a high melting point (~1700 °C),
 11

 which 

allows it to withstand large, rapid changes in temperature without cracking.  

The torch contains three concentric channels. Argon that flows through the outer 

channel (outer gas, ~1 L/min) and the middle channel (auxiliary gas, ~16 L/min) is used to 

stabilize, shape, and regulate the temperature of the plasma. The outer and auxiliary gas 

flows may be independently controlled to achieve the desired plasma. The central channel is 

where the sample gas carries the sample aerosol into the plasma. 

To create the plasma, a radio frequency (RF) wave (27 or 40 MHz) is applied to a coil 

with 2 to 4 turns located around the outside of the torch at the downstream end. The plasma 

power is typically operated at 1200 W, but may be changed depending on the desired plasma 

conditions. Cool plasmas used for the reduction of polyatomic species generally operate with 

a much lower forward power. 

A spark provides initial free electrons, which collide with and ionize the Ar gas. This 

process creates more free electrons. The resultant free electrons collide with other Ar atoms 

and sample molecules effectively atomizing and ionizing them. 

The most common form of sample introduction into the plasma is by solution 

nebulization. Solutions are typically nebulized into a spray chamber and the resultant aerosol 

is sent into the centermost tube of a quartz torch, where it is vaporized, atomized and ionized 

in the plasma. 

 

Mass Spectrometer 

Sample ions and gas are extracted from the plasma through a series of cones: the 

sampler and the skimmer, which are commonly made of Pt, Ni, or Al. These cones shape the 
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ions into a narrow beam and provide an interface for the differential pumping system. Using 

ion optics, the ion beam is accelerated and shaped to allow passage through the entrance slit 

to the mass analyzer.  

 There are several different types of mass analyzers that may be used for ion 

separation in conjunction with ICP. From the mass analyzer, the ions travel into the detector 

where the ion signal is converted into an electronic signal, which is amplified and finally 

detected.  

The mass analyzer used in all three areas of this work is called a magnetic sector, 

which can be seen in Figure 2. The particular model seen in Figure 2 is an ELEMENT 1 

(Thermo, inc.) magnetic sector. This particular model has a reverse Nier-Johnson geometry 

where ions are first separated according to their various momenta by the magnet and then are 

focused to pass through the exit slit and onto the detector based on their respective kinetic 

energies by an electrostatic analyzer (ESA). A magnetic sector with a Nier-Johnson geometry 

has the components switched, where ions are first separated according to their kinetic 

energies by an ESA followed by additional separation by the magnet based on each ion’s 

momentum. Magnetic sector instruments have a range of available operating mass 

resolutions (m/∆m = 300, 4000, or 10000) that are achieved by varying the entrance and exit 

slit widths. The width of the high resolution slit is only 10 µm wide; barely visible to the 

naked eye. However, there is a trade-off of decreasing ion throughput and therefore 

decreasing signal with increasing resolution.  

A multi-channel (MC) mass analyzer combines the high mass resolution ion 

separation technique of magnetic sector geometry with several separate detectors called 

Faraday cups. This type of mass analyzer is unique in that simultaneous measurements of 
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signals from different masses may take place, thus, increasing the sensitivity of analyte ions, 

obtaining better accuracy of isotope ratios, and negating the need for fast electronic 

switching.   

 

Polyatomic Interferences 

 ICP-MS typically produces singly-charged monatomic ions, however this is not 

always the case. Incomplete atomization and ionization of matter in the plasma or inelastic 

collisions can lead to detection of polyatomic ions in the MS. These polyatomic ions can 

have approximately the same m/z value as singly charged monotomic analyte ions, 

worsening precision and accuracy of the analysis. Common polyatomic ions typically consist 

of some form of metal argide (MAr
+
), metal oxide (MO

+
), or metal hydride (MH

+
) ionic 

species because argon, oxygen, and hydrogen are the most abundant elements found in the 

plasma besides sample matter.
 12

 The occurrence of these ions in the plasma depends on 

several different factors such as the bond dissociation energy of the species, the abundance of 

the neutral elements entering the plasma and the temperature of the plasma. 

There are a variety of ways to reduce these polyatomic ions to increase precision and 

accuracy of analyte signal. One solution is to increase the plasma temperature enough to 

eliminate these interferences; however, this will also increase the prevalence of doubly 

charged atomic ions, which in turn, can interfere with analyte signal. 
13

 

One particular example of a polyatomic interference is that of 
40

Ar
16

O
+
 (m/z 

55.95729), which interferes with the most abundant isotope of iron, 
56

Fe
+
 (m/z 55.93494). 

The resolution required to separate these two ions from one another is only 2500, which can 

be achieved using a commercial instrument. Increasing the resolution can distinguish analyte 
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signal from polyatomic interference signals. However, the analyte signal must be high as 

there is a trade-off of decreasing sensitivity with increasing resolution. There are instances 

where even the best commercial instrument is not able to resolve two signals. Like the case 

of 
102

Ru
+
 (m/z 101.90435) and 

86
Sr

16
O

+ 
(m/z 101.90418) which requires a resolution of 

approximately 600,000 to separate the signals.  

MO
+
 and MH

+ 
species typically originate from the use of water as a solvent. A 

desolvation system like an Apex (Elemental Scientific Inc., Omaha, NE) can increase analyte 

sensitivity by drastically decreasing the number of water molecules injected into the plasma.
 

14, 15
 

 

MEMORY EFFECTS 

Samples with high amounts of volatile elements such as Hg, Cd, I, Pb and Li suffer 

from undesirable memory effects, which cause long washout times and decreased sensitivity 

over time.
 16 17 18

 Mercury is a volatile element that will adhere to the walls of the spray 

chamber and sample tubing and can volatilize later, decreasing accuracy. Thorium is a non-

volatile element that is not expected to suffer similar effects as Hg, but does in practice for 

unknown reasons.
 19

 However, it has been determined that Th will only adhere to- and 

volatilize from the walls of the spray chamber and not the sample tubing.
 20

 There have been 

many attempts to reduce memory effects from volatile elements such as the use of a 

desolvation system (i.e. apex), 
15

 a flow injection sample introduction system,
 21

 an isotope 

dilution cold vapor technique,
 22

 microsampling,
 23

 and pre-treatment with a reducing agent.
 24
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SAMPLE PREPARATION 

 Liquid samples for analysis by ICP-MS typically are aqueous in nature as organic 

solvents can destabilize and extinguish the plasma.
 25

 Samples are commonly acidified and 

diluted using aqueous acids to keep elements in solution and achieve a stable signal from the 

instrument.  

 

Dissolution 

 Solid samples can be dissolved using strong aqueous acids such as nitric acid 

(HNO3), hydrochloric acid (HCl), sulfuric acid (H2SO4), or hydrofluoric acid (HF). 

Considerations for choosing the best acid for dissolution depend on the sample matrix and 

what will keep the element of interest in solution.   

If the acid does not keep the analyte in solution, problems with detection can occur.  

Large particles could clog the nebulizer and sample would not be introduced into the plasma. 

Another problem associated with poorly dissolved samples is agglomerations of analyte that 

may enter the plasma, atomize and ionize all at once, causing spikes and poor signal stability. 

Conversely, analyte agglomerations from poorly dissolved sample may not all be completely 

atomized and ionized and thus will not be detected, causing misrepresentation of the true 

analyte content in the sample.  

Sometimes microwave digestion is necessary to heat the sample and acid under 

intense pressure in a closed vessel. Microwave digestion is effective at dissolving samples 

because heating increases the solubility of metals and the speed of sample decomposition 

while lowering the pressure in the relatively much cooler, Teflon vessel.
 26 
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Clean Techniques 

As ICP-MS is very sensitive, clean techniques such as sub-boiling acid distillation 

and acid vapor washing of Teflon containers must be employed to reduce contamination 

from acid, solvent (i.e. water), and sample containers.
 27, 28

 Sub-boiling distillation is a 

technique used to clean acids by gently heating one end of an L-shaped tube containing one 

type of contaminated acid. The clean acid vapor will condense on the cool, unheated bend 

and collect in the other end of the tube, which is located in a bucket of cool water. Gentle 

heating is required for this technique because low boiling-point elements (such as Hg) can be 

easily vaporized and end up in the “clean” acid. 

 Solutions must be stored in clean Teflon containers instead of glass because glass 

tends to leach metals and contaminate samples, especially in the presence of acids.
 28

 

Additionally, Teflon sample containers must be cleaned by a process called acid vapor 

washing.
 27

 Basically, acid vapor washing is a form of gently refluxing concentrated nitric 

acid from a plastic bottle into an upturned Teflon bottle being cleaned on top.  

 

LASER ABLATION 

Another form of sample introduction is ablation of solid samples using a laser. In the 

laser ablation used here, a beam of 266 nm laser light is focused onto the surface of a sample 

in a closed ablation cell and the resulting sample matter is swept through a tube to the ICP by 

a carrier gas. Laser ablation can be more advantageous than solution-based introduction 

systems because little to no sample preparation is required.
 29

 Additionally, spatial 

information may be collected for sample imaging.
 30, 31, 32
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One caveat of laser ablation is in order for an accurate analysis, samples must be 

homogeneous, have a flat surface for effective ablation, and must be compared to matrix-

matched standards.
 33

 

 

Carrier Gas 

Typically Ar is used as the carrier gas for laser ablation, however studies have shown 

the advantages of using He, rather than Ar. Helium has a larger thermal conductivity than Ar, 

allowing it to disperse heat away from the ablation site thereby reducing fractionation 

(defined here as the discrepancy of the actual sample stoichiometry from the detected 

stoichiometry). 
34, 35

 He has also been shown to reduce the redeposition of ablated sample 

material back onto the sample.
 36

  

 

Pulse Length 

Traditionally, lasers with a pulse length in the nanosecond (ns) range have been used 

for laser ablation, however lasers with femtosecond (fs) pulse length are more effective, with 

better precision and accuracy than ns lasers.
 37

 The short length of time of a single pulse for a 

fs laser is not long enough to allow the sample to dissipate the energy into the sample as heat.
 

38
 The longer pulse-length of ns lasers imparts more energy that dissipates as heat into the 

sample. Due to this heat dissipation, ablation using ns lasers can lead to sample melting and 

undesirable fractionation effects.
 39

 Particulate matter ejected from the surface of a sample 

during fs laser ablation is much smaller in size, and more uniform than that of ns ablation.
 40

 

Recently, there has been a photographic study comparing matter being ionized and atomized 
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in the ICP from a ns laser and a fs laser which shows that aerosol from the fs laser is easily 

ionized, with fewer large particles than that of ns lasers.
 41

 

 

DISSERTATION ORGANIZATION 

 This dissertation is organized into five chapters. The first chapter provides a general 

introduction to ICP-MS and laser ablation. Chapter 2 is a manuscript detailing the 

determination of As in dissolved rice grains and coffee bean samples that were cultivated in 

different countries throughout the world. This chapter independently confirms the arsenic 

content in rice to that of the FDA findings. In chapter 2, the country of sample origin was not 

correlated with arsenic content. Similarly, there was no correlation between the arsenic 

content in any particular type of rice analyzed (i.e. black, brown, jasmine, etc.)  

Chapter 3 is a manuscript prepared for submission into The Journal of Forensic 

Science. It describes a new application of utilizing principal component analysis (PCA, a 

multivariate statistical technique) to identify trace elements which contribute the most 

variance to distinguishing between different samples. Additionally, this new method was 

utilized on data taken from laser ablation ICP-MS measurements to perform a head-to-head 

comparative trace-elemental analysis of the backing and adhesive sides for four different 

brands of duct and electrical tapes.  

Chapter 4 is a manuscript for a chapter called “Pigments” to be published in a book 

titled: La Belle: The Archaeology of a 17
th

 Century Ship of New World Colonization. It 

describes an elemental analysis and chemical identification of suspected vermilion pigments 

taken from a French ship which sank off the coast of Texas around 1684. Chapter 5 is a 

summary of conclusions from the above studies. 
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FIGURES 

 

Figure 1 Schematic of the inductively coupled torch. The plasma created in this fused quartz 

torch vaporizes, atomizes, and ionizes samples that are sent through the middle channel by 

the sample gas.
 42
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Figure 2 Double focusing ICP-MS device. Ions are separated first by their respective 

momenta and then refocused by the electrostatic analyzer based on their respective kinetic 

energies.
 43
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Chapter 2: Determination of Total Arsenic in International Samples of 

Rice and Coffee by Inductively Coupled Plasma Mass Spectrometry 

 

Megan L. Mekoli and R. Sam Houk  

Ames Laboratory-U.S. Department of Energy, Iowa State University (ISU), Ames, Iowa, 

50011-3020 

 

ABSTRACT 

 The concentration of As in coffee and rice samples was determined using solution-

based inductively coupled plasma-mass spectrometry. Rice concentrations determined here 

were found to agree with those found in previous studies by the FDA
 1

 and Consumer 

Reports magazine
 2

. Whole, uncooked rice grains were found to contain more As than coffee 

beans. One sample of rice in particular contained a very high concentration of total As. There 

was no correlation between total As content in rice and the country of origin. Additionally, 

there was no correlation between total As content in rice and the type of rice analyzed. In 

contrast, coffee beans cultivated in Uganda contained more As than coffee beans cultivated 

in other countries. 

 

INTRODUCTION 

  Recent published reports have indicated the total As content in rice grains and other 

rice-based food products can be alarmingly high. Rice (Oryza sativa) is a grass that is 

cultivated annually in warm climates. The processed (de-hulled) grains are a dietary staple 
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for much of the world’s population. Rice is also used as a substitute for gluten containing 

grains in many processed foods for gluten-intolerant people. 

With so much consumption of rice around the world, the content of toxic elements in 

rice is cause for concern. Recently, Consumer Reports
 2

 reported total As concentrations in 

rice in the range of hundreds of ppb. The FDA
 1

 also reported total As values in 

approximately 200 rice and rice product samples that were of similar concentration ranges to 

those reported by Consumer Reports.    

There are two general classes of As compounds: inorganic and organic. Inorganic As 

is considered to be more dangerous than organic As because inorganic arsenic can cause a 

range of life-threatening diseases.
 3

 However, more recent studies indicate that organic As 

can also be harmful.  

There are two oxidation states, for As in inorganic compounds: arsenite (As
III

) and 

arsenate (As
V
). Arsenic in arsenous acid, has a +3 oxidation state and has the chemical 

formula As
III

(OH)3.  

Arsenous acid:   As(OH)3  H
+
 + As(OH)2O

-  
pKa= 9.22 [1]

 4
 

The Arsenate (As
V
) ion, AsO4

3-
, which has a +5 oxidation state, also has acid-base properties. 

Arsenic acid (H3AsO4) is a triprotic acid which has similar characteristics to phosphoric acid  

(H3PO4). 

    H3AsO4    H
+
 + H2AsO4

-
  pKa1 = 2.19

 
[2]  

    H2AsO4
-
   H

+
 + HAsO4

2-
  pKa2 = 6.94 [3] 

    HAsO4
2-

   H
+
 + AsO4

3-
  pKa3 = 11.5 [4]

 4
 

 These highly toxic inorganic As
III

 and As
V
 compounds can be converted by bacteria 

into less toxic forms of organic As.  Monomethylarsinic acid (CH5AsO3) dimethylarsinic 
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acid, ((CH3)2AsO2H) and arsenobetaine, (CH3As
+
CH2COO

-
) are three of the most common 

organic compounds in nature that are widely considered to be less harmful as compounds 

containing As
v
. 

Inorganic arsenic is especially dangerous to life forms because it is chemically similar 

to phosphorus, which occurs in the same group of the periodic table. Phosphorus is an 

essential element to life and is in the sugar-phosphate backbone of DNA, it also participates 

in energy production as adenosine triphosphate (ATP). Arsenic disrupts these essential 

biomolecules by causing epigenetic changes to DNA such as excessive methylation, histone 

modification and interference with RNA.
 5

 Chronic human exposure to As has been shown to 

correlate with a range of life-threatening illnesses such as mild toxicity, cardiovascular 

disease, neurological defects, and cancer.
 6

  

The most common form of exposure to compounds containing As is ingestion of 

contaminated food and water.
 7

 There are currently limits on As concentrations in drinking 

water. The highest acceptable limit of total As in drinking water for the European Union is 

10 ppb,
 8

 while 10 ppb is the highest acceptable limit for inorganic As in the US
 9

 and for the 

World Health Organization (WHO)
 10

. Arsenic is a component in pesticides, herbicides, 

wood preservatives, coal burning, runoff from mineral mining, and waste from glass 

manufacturing that can end up in water and soil.  

Over time, As can accumulate in soil and be taken up by crops meant for 

consumption by humans. It is possible that rice grown in paddies can be exposed to and take 

up even higher amounts of As from the free-standing water in which the plants are grown.
 11, 

12, 13
 However, the US FDA does not currently have limits in place for total As in rice, but 

there has been recent legislation proposes such limits.
 14
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 Another possible source of As exposure is coffee. Coffee beans are classified as 

berries which grow on the outer region of the coffee plant, unlike rice, which grows within a 

husk. Whole coffee beans are typically not eaten, only steeped with hot water to extract 

flavor components. With the high water solubility of inorganic As, it could be particularly 

dangerous, as the process of making coffee could extract and concentrate this harmful toxin.  

 Total As in rice has typically been quantified by inductively coupled plasma-

quadrupole mass spectrometry (ICP-qMS) with a collision cell.
 15, 16

 Total As can also be 

measured using magnetic sector ICP-MS
 20

 as is also the case here. Total As here was 

measured in low resolution using a magnetic sector ICP-MS. At low and medium resolutions 

(m/∆m=300 and 4000, respectively), there is a polyatomic ion
 
signal at m/z 75 (

40
Ar

35
Cl

+
), 

which interferes with the only As isotope at the same m/z value. Corrections are required to 

account for this interference when As signal is measured in low and medium resolutions on a 

magnetic sector ICP-MS.  The use of high resolution (m/∆m=10000) on a magnetic sector 

ICP-MS instrument may distinguish these peaks. However, the small slit width used for high 

resolution lowers ion transmission that leads to signal loss of over 80% from that of low 

resolution; the signal using high resolution may be too low for detection. 

Other ways of quantifying total As in rice have been by nanoscale secondary ion mass 

spectrometry (SIMS),
 17, 16

 synchrotron-X-ray fluorescence (S-XRF),
 15

 or in a few, very 

recent cases, by laser ablation (LA)-ICP-MS.
 18, 19

 

 The study here determines if there are regional trends (i.e. distinct country-wide 

trends) of total As in rice and coffee or whether total As concentrations in these foods are 

more localized. Different types of rice such as black, brown or white rice, may possess 

different amounts of As. The type of rice analyzed is examined to discern any trends. A 



www.manaraa.com

20 
 

magnetic sector ICP-MS is used to measure total As concentration in 12 samples of rice and 

7 samples of coffee. 

 

METHODS 

Samples 

 Table 1 is a list of the rice and coffee samples along with information on their origins.  

Twelve samples of rice were purchased at local grocery stores and international markets in 

Ames. Samples were collected in categories of white, black, and brown rice from diverse 

international origins to discern possible trends in rice type and country of origin. Two 

samples, Lundberg long grain and Lundberg jasmine were marketed as “certified organic” 

from the Lundberg Family Farms in Richland, CA.
 21

 Seven brands of whole, dry-roasted 

coffee beans were purchased at a local co-op. These coffee beans were marketed as “fair 

trade” coffee with the country of origin clearly displayed.  

 

Sample Preparation 

Coffee samples were individually ground using a clean, dry granite mortar and pestle 

for easier dissolution. Approximately 0.5 g of each sample was weighed into clean Teflon 

microwave digestion vessels along with approximately 10 g of clean sub-boiling distilled, 

70% nitric acid. Rhenium was added to the concentrated nitric acid at 10 ppm as an internal 

standard  (Alfa Aesar Specpure, Ward Hill, MA) to correct for incomplete transfer from the 

digestion process. The samples were digested using a microwave digestion system (MDS 

2100, CDM, Matthews, NC). Table 2 is a list of operational parameters for the microwave 

digest system. 
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 Approximately 600 µL of digested material was diluted to a final mass of 

approximately 30 g using ultrapure (17.4 MΩ, Millipore) water. Tungsten (1 ppm, High 

Purity Standards, Charleston, SC) was added during this step as an internal standard to 

monitor ICP-MS signal response and correct for matrix effects. The final concentration of 

digested material was approximately 1000 ppm and the concentrations of both the Re and W 

internal standards were approximately 10 ppb. A blank without rice or coffee from clean, 

microwave digested 70% nitric acid was also made in the same manner. Transfer recovery of 

Re from the digestion was 70% to 108% for the digestion of rice and 61% to 78% for coffee. 

 

ICP-MS 

Arsenic content of the dissolved and diluted samples was measured in low resolution 

(m/∆m=300) on a magnetic sector ICP-MS device (ELEMENT 1, Thermo, inc.). 

Instrumental operating parameters of the ELEMENT 1 ICP-MS device can be found in Table 

3.  

 

Data Analysis 

 Arsenic has one stable isotope at m/z 75, however, a polyatomic interference 

corresponding to 
40

Ar
35

Cl
+
 overlaps with the 

75
As

+
 signal (SAs) at m/z 75. The samples of 

interest contain substantial levels of chlorine, so the 
40

Ar
35

Cl
+
 content must be adjusted using 

40
Ar

37
Cl

+
. Because 

77
Se

+
 interferes with the 

40
Ar

37
Cl

+
 peak  at m/z 77, the total signal of m/z 

77 must also be adjusted using 
82

Se
+
 at m/z 82. Krypton also has an interference at m/z 82, 

that is typically accounted for as it can often be present in Ar used for plasma generation, 

however in the experiment here, there was no observable Kr signal. 
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 Signal intensity values at masses m/z 75, 77, 82 and 83 collected in low resolution 

from the ICP-MS were peak area integrated, averaged over 100 subsequent measurements 

and background subtracted.    

The overall simplified expression for finding the adjusted arsenic signal (SAs) is: 

    SAs=S75 – 3.13S77 + 2.6S82 +0.84S83   [5] 

where SAs is the actual signal of the arsenic, S75 is the measured signal at m/z 75, S77 is the 

measured signal at m/z 77, S82 is the measured signal at m/z 82 and S83 is the measured 

signal at m/z 83. In this case, S83 = 0. To determine concentration, the adjusted As signals 

(SAs) were compared to a 10 ppb standard solution of As (SCP Science, Champlain, NY), Re 

and W in 2% nitric acid. 

 

RESULTS AND DISCUSSION 

Table 4 lists the concentration of As and the 1 sigma precision values in rice and 

coffee samples. The limit of quantitation (LOQ), defined here as ten times the measured 

integrated, averaged blank level, was found to be 0.23-2.07 ppb. 

 

Rice  

The concentrations of total As in rice determined here are similar to what was found 

by others.
 1,  2 

The total As content of Carnaroli rice was found to be 122 ± 8 ppb. In a study 

recently published by the US FDA,
 1

 Carnaroli was a brand of rice that was analyzed for As 

content. In the FDA study, Carnaroli was found to contain 112 ppb of total As, not far below 

the average value determined here (122 ± 8 ppb). Uncertainty was not provided in the FDA 
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study, so exact agreement between of the reported concentration by the US FDA
 1

 and the 

concentration found here could not be determined. 

Rice samples were collected with the specific goal of comparing As content from 

different international growing locations. In the samples analyzed here, there was not a clear 

trend between As concentration and the country of origin. Rice samples originating from 

Thailand contained varying concentrations of As, from 111 ± 6 ppb to 234 ± 15 ppb. Higher 

levels of As in water and soil have been reported in many areas of Thailand due to runoff 

from tin mining.
 13

 The varying levels of total As in rice from Thailand indicate that 

generalized country-wide statements could not be made regarding total As composition and it 

is likely that total As concentrations may be dependent on more localized conditions; 

however, in order to make definitive conclusions, As concentration in rice must be assessed 

relative to soil. 

Also of interest is the basmati rice sample labeled Mekong Flower from Cambodia. 

This sample contained 412 ± 26 ppb, by far, the highest concentration of total As overall. 

According to Kohnhorst,
 13

 the Mekong River Delta soil, (a likely origin of this particular rice 

sample as it is named “Mekong Flower rice”), has a very high natural As abundance. More 

analyzed samples of rice originating from Cambodia would be necessary to confirm whether 

the rice originating from the Mekong delta has consistently higher As concentration than rice 

cultivated in other countries. 

Samples from Lundberg Family Farms in CA, USA that were marketed as “certified 

organic rice” did contain lower concentrations of total As than many other international rice 

samples analyzed here that were not labeled as “certified organic rice”. In the US, there are 

strict guidelines for certified organic farming, especially concerning the use of pesticides, 
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herbicides, and wood-preservation chemicals. Such regulations have been shown to add 

increased amounts of As. However, even in the certified organic rice samples, there are still 

detectible levels of As.  

Multiple different types of rice were collected and analyzed to determine whether 

there are trends in total As content associated with a particular type of rice (i.e. black, brown, 

basmati, jasmine). Table 4 indicates the type of rice analyzed for each sample. There are no 

clear trends indicating any type of rice has consistently high or low amounts of As. From the 

samples analyzed here, it seems likely that As content in rice is not correlated with the type 

of rice cultivated. 

 

Coffee 

Coffee samples analyzed here generally contained far less total As than rice. There 

were two samples, C 4 from Peru and C 6 from Ethiopia, which did not contain measurable 

total As above the limit of detection (defined here as the sample concentration that yields a 

net signal 3 times the signal of the background: ~0.5 ppb in the dissolved sample). 

 There were two coffee samples analyzed which originated from Uganda. These 

samples contained the highest concentrations of total As measured here, 70 and 142 ppb. The 

total As concentration of the latter coffee sample was higher than that of half the rice samples 

analyzed. 

 The beans analyzed here were also of the caffeinated variety. The process of 

decaffeinating coffee beans involves steaming the whole beans and then extracting caffeine 

using organic solvents. Another interesting study could be conducted to determine if the 

decaffeination process changes total As content. 
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CONCLUSION 

The concentrations of total As in rice samples were found to be consistent with those 

published by the FDA and Consumer Reports.  

The data reported indicate that total As content in rice can be dependent upon more 

localized soil compositions than a generalized country-wide region. With high restrictions 

put on food products marketed as “certified organic”, the analyzed certified organic rice 

samples generally contained lower concentrations of total As than many other samples 

analyzed here. However, these samples still contained measurable concentrations of total As, 

well over the limit of quantitation for this particular analysis.  

There was no correlation between the concentration of As measured and the type of 

rice grain.  

 With the exception of sample C 5, coffee contained far lower concentrations of total 

As than rice samples. C 5, originating from Uganda contained an alarmingly high 

concentration of total As. 
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TABLES 

 

Table 1 List of rice and coffee samples that were analyzed for As content. 

Rice Sample Country of Origin Type 

Milagrosa Thailand Jasmine rice 

Assi Rice China Black rice 

Lundberg Long Grain  CA, USA Brown rice 

Lundberg Jasmine CA, USA Jasmine rice 

Mekong Flower Cambodia Basmati rice 

Forbidden China Black rice 

Jade Pearl CA, USA White, polished rice 

Carnaroli Italy Basmati rice 

Volcano Indonesia White/brown mixed 

Alter Eco Thailand Jasmine rice 

Asian Taste Thailand Jasmine rice 

Duru Turkey Basmati rice 

   

Coffee Sample Country of Origin Type 

C 1 Ethiopia Coffee 

C 2 Bolivia Coffee 

C 3 Guatemala Coffee 

C 4 Peru Coffee 

C 5 Uganda Coffee 

C 6 Ethiopia Coffee 

C 7 Uganda Coffee 
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Table 2 Parameters for microwave digestion of rice and ground coffee samples in Teflon 

Max Temperature  190 ˚C  

Microwave digestion program:   

Stage Max pressure (PSI) power (W) Ramp time (min) Time at set point (min) 

1 40 500 10 5 

2 80 550 10 5 

3 120 600 10 5 

4 175 650 20 10 

 

 

 

 

 

Table 3 Instrumental parameters for ICP-MS device 

ICP-MS Instrument ELEMENT 1 (Thermo, inc.) 

Sampler and skimmer cones Ni, H configuration (Thermo, inc.) 

Sample gas 1.06 L Ar min
-1

 

RF Power 1150 W 

Outer/auxiliary gas stream 16.00/1.16 L Ar min
-1

 

Torch position, ion optics Optimized for maximum sensitivity and stability 

Scan mode  

        dwell/settling time 

Peak jump, 10 points per mass, 10 ms dwell time, 

2.1 ms settling time 

Detection mode 

        Runs/passes 

Counting 

100 runs/1 pass 

m/z values measured (low resolution, 

m/∆m=400) 

75, 77, 82, 182, 184, 185, 187
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Table 4 Concentration of total As in original rice samples 

     

Rice Sample Total As conc. (ppb) 

Precision (ppb) 

Std dev., n=100 
Country of Origin 

Type 

Lundberg jasmine 69.5 4.4 CA, USA Jasmine rice 

Volcano 70.7 4.6 Indonesia Brown/White mixed rice 

Milagrosa 111 6.0 Thailand Jasmine rice 

Lundberg long grain 111 7.1 CA, USA Brown rice 

Jade pearl 119 7.5 CA, USA White, polished rice 

Carnaroli 122 7.8 Italy Basmati rice 

Duru 202 11 Turkey Basmati rice 

Forbidden 202 11 China Black rice 

Alter Eco 220 14 Thailand Jasmine rice 

Assi 228 13 China Black rice 

Asian Taste 234 15 Thailand Jasmine rice 

Mekong flower 412 26 Cambodia Basmati rice 
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Table 5 Concentration of total As in coffee 

Coffee Sample Total As conc. (ppb) 
Precision (ppb) 

Std. dev., n=100 
Country of Origin 

Type 

C 4 < 0.5* NA Peru Coffee 

C 6 < 0.5* NA Ethiopia Coffee 

C 3 12.49 0.87 Guatemala Coffee 

C 2 32.80 2.12 Bolivia Coffee 

C 1 63.51 4.76 Ethiopia Coffee 

C 7 70.00 3.93 Uganda Coffee 

C 5 141.94 7.62 Uganda Coffee 

*L.O.D. ≈ 0.5 ppb
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ABSTRACT 

Tape can be used to commit a crime and is often collected as crime scene evidence. 

The elemental composition of tape is of forensic interest. Elemental measurements of duct 

and electrical tapes were taken by a nanosecond laser ablation-inductively coupled plasma-

mass spectrometry. Principal component analysis (PCA) is a multivariate data reduction 

technique used to simplify and visualize large sets of data. The data collected was analyzed 

using PCA. An iterative subtraction technique is used to determine which elements 

contribute the most variance between differing brands of each type of tape; it’s likely that 

some of these elements originate from bulk additives during the manufacturing process of 

these tapes. The adhesive and backing sides from four different brands of duct and electrical 

tape are analyzed using PCA and the iterative subtraction technique described. Head-to-head 

comparisons of these tapes are performed using Q-residual analysis. All brands of the 

backing and adhesive sides of duct tape were found to be distinguishable from one another to 

95% confidence. Similarly, the backing side of all electrical tape brands analyzed were 

distinguishable from one another to 95% confidence. For the adhesive side of electrical tape, 

Plymouth brand electrical tape could not be distinguished from UL and Super 33 brands.  
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INTRODUCTION 

Duct and electrical tapes are often collected from crime scenes as evidence. These 

types of tapes can be used to commit a crime and may be found in bombs or from binding a 

victim. The composition of such a tape sample could be of forensic interest as new methods 

for head-to-head comparisons become available.  

Searchable databases of common forms of evidence are desirable to law enforcement 

officials. Databases could include the trace composition of objects commonly used to commit 

a crime. However, the creation of a database is an exhaustive task that requires extensive 

time and funds. Trace analysis of tape and other materials of forensic interest (paints, glass, 

metals, fibers, etc.) may be accomplished by elemental analysis without quantification using 

statistics. Qualitative head-to-head comparison is directly matching evidence collected at a 

crime scene to a small set of candidate samples collected from a suspect. To prove a match 

using this type of analysis, forensic analysts must show how distinctive the evidence is. 

Statistical analysis of trace components in evidence can be used to determine the level of 

confidence a forensic scientist has in attributing the evidence from the crime scene to a 

similar candidate sample. 

 Traditionally, characterization and attribution of tapes as forensic evidence was 

accomplished by end matching
 1

 and microscopic evaluation methods.
 2, 3, 4

 Recently, trace 

metals and organic components in electrical tape have been measured using attenuated total 

reflectance-fourier transform infrared spectroscopy (ATR-FTIR), X-ray fluorescence (XRF), 

and middle infrared spectroscopy (MIR-IR).
 5, 6, 7, 4

 Goodpaster
 6, 7 

published a comprehensive 

study of electrical tapes using scanning electron microscopy with energy dispersive 

spectroscopy (SEM-EDS) and X-ray powder diffraction (XRPD) instrumental techniques. 
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Goodpaster also only measured the signals from 10 elements that could readily be seen using 

SEM-EDS. SEM-EDS has a detection limit of approximately 10 ppm, which is not sensitive 

enough for the detection of ultra-trace material. There has not been elemental analysis of duct 

tape in the literature to date. 

Tape is very thin and prone to melting, stretching and weathering, which makes it a 

difficult medium to analyze. Non-destructive techniques such as SEM-EDS and XRF contain 

desirable attributes for analysis, however these methods lack the sensitivity to measure ultra-

trace components in tape at concentrations of 10 ppb or lower. High sensitivity and the 

ability to rapidly analyze the trace element composition of tape sets inductively coupled 

plasma-mass spectrometry (ICP-MS) apart from methods used in the literature. 

 

Laser Ablation ICP-MS 

 Dissolution of a sample of tape for analysis of trace components via ICP-MS 

accomplishes the sensitivity needed for ultra-trace forensic analysis, but completely destroys 

precious evidence. Laser ablation (LA) is a sampling technique that uses an ultraviolet laser 

to ablate a small amount of material from the sample surface for analysis by the ICP-MS 

device. LA-ICP-MS is a rapid and sensitive technique, which causes only minor sample 

destruction, requires no sample preparation, and is capable of measuring analytes in 

concentrations of 10 ppb or lower. Gray
 8

 was the first to combine the high sensitivity and 

multielement measurement capabilities of the ICP-MS with a laser, for direct sampling of 

solid materials. Watling became the first to use LA-ICP-MS for forensic purposes by 

analyzing trace elements in gold.
 9

 Other forensic uses of LA-ICP-MS are to match fragments 



www.manaraa.com

35 
 

  

of glass, 
10, 11, 12 

fingerprint sapphires,
 13

 and compare brick stones
 14

 among many other areas 

of trace forensic science. 

 

Principal Components Analysis 

Multivariate statistical techniques are valuable to manage the analysis of the large sets 

of information produced by ICP-MS. Principal components analysis (PCA) is a statistical 

data reduction technique which examines variance in complex multidimensional datasets and 

allows for graphical visualization of groupings and trends.
 10, 15

 For these groupings and 

trends to be visualized, multiple data collections from each sample are required so as to gain 

a clear understanding of the content for each sample. Different runs of the same sample 

should have similar characteristics as each other, whereas runs of different samples may have 

widely varying characteristics from one sample to another.  

PCA was previously used to analyze data collected from laser ablation ICP-MS 

measurements of glass fragments and metals.
 11, 16

 Goodpaster et al. have also published 

statistical analyses of electrical tape using PCA
 6, 7

 and found it was a very useful tool for 

analyzing multi-element data using SEM-EDS. However, they used measured signals from 

only 10 elements. Using PCA, Goodpaster et al. were able to distinguish 36 different classes 

(i.e. brands and dates of manufacture) of electrical tapes from one another.  

 Thus far, the analytes measured for head-to-head comparison of tapes in the literature 

have only been ones that are relatively abundant. Because the techniques mentioned in the 

literature are not sensitive enough to measure ultra-trace elements, only 10 elements that are 

expected to be present in all tapes have been examined. Goodpaster reported that lead content 

was one important distinguishing characteristic between different electrical tapes. In 2002, 
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lead was discontinued as a component in the production of these tapes.  Therefore, tapes 

manufactured prior to 2002 should contain more lead. However, if the sample set is 

composed only of tapes manufactured prior to 2002 or after 2002, the tapes are not so easily 

distinguished from each other. While Goodpaster et al. were able to distinguish 36 classes of 

the analyzed electrical tapes from one another, perhaps more detailed information for head-

to-head analysis could be gained by measurement of more elements using ICP-MS. Duct tape 

has not been previously examined in this way. 

Ultra trace elemental analysis could help distinguish two otherwise indistinguishable 

samples of tape. The work described here provides a method by which elemental trace 

analysis may be conducted to determine which elements in tapes provide the most variability 

on an individual case-by-case basis. 

 

METHODS 

Samples 

 Duct tape is manufactured by combining a scrim (or cloth) to a polyethylene back 

using a poured, hot rubber adhesive. Electrical tape is manufactured by spraying hot adhesive 

onto a polyvinyl backing.
 17, 18

  

Table 1 is a list of samples that were used in this study.  Exact dates of manufacture 

were unknown. Samples were chosen based on availability and brand popularity. Two 

separate rolls of 3M Super 33 electrical tape were analyzed. One was a newer roll that had 

been manufactured in the early 2000s and the other roll was approximately 20 years older. 
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Both Super 33 rolls were included in the study to determine whether tapes manufactured 

several years apart by the same company could be distinguished.  

 

Laser Ablation and ICP-MS 

 The outer layer of tape still on the roll is likely contaminated, so several layers were 

unrolled and discarded to expose fresh tape underneath. A fresh tape sample approximately 7 

cm long was cut, stretched across a large metal washer (4.4 cm outer diameter) to support the 

tape in the laser cell and the excess tape was trimmed off. The backing and adhesive sides 

were ablated in a square raster pattern through the hole in the washer, the underlying washer 

was not ablated. A medium resolution (m/∆m = 4000) full mass spectrum (m/z = 7 to 238 

except for m/z 10 to 23, 32 to 45, 54, 79 to 82, 127, 129, 151, and 210 to 231) was acquired 

by a magnetic sector ICP-MS device (ELEMENT 1, Thermo Fisher Scientific Inc.), which 

has been described elsewhere.
 19

 Mass spectra were collected from seven different spots on 

each side of a sample of tape while ablating a square raster pattern on the surface of the 

sample. The interior of the ablation cell was wiped with a clean, dry kimwipe whenever the 

cell was opened to flip the washer or to change samples. Background signals were collected 

with argon flowing through the ablation cell while the laser was off. 

 Samples were ablated using a commercial Q-switched Nd:YAG laser (266 nm, 

frequency quadrupled from1064 nm, pulse length 10 ns, 9.1 mJ/pulse, CETAC LSX 500, 

CETAC Technologies, Omaha, NE). Laser and ICP-MS parameters may be found in Table 2.  

The signals at each m/z value were peak-area integrated and background subtracted. In 

general, signal levels corresponded to accepted isotope ratios. 
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Data Analysis 

PCA was performed using the peak integrated and background subtracted signals at 

various m/z values with commercial software (Solo Eigenvector versions 4.0 and 6.3).  To 

avoid biasing the data, no preprocessing such as normalizing, mean centering, or autoscaling 

was performed before PCA.  

 

RESULTS AND DISCUSSION  

Figure 1 is a side-by-side comparison of peak integrated background subtracted mass 

spectra from two measurements of the adhesive sides of two different duct tape samples. It is 

difficult and time-consuming, but not impossible, to visually distinguish between the full 

mass spectrum for the adhesive side of Duck brand duct tape (Figure 1a) and Nashua brand 

duct tape (Figure 1b). 

PCA is a multi-dimensional data reduction technique using the mathematics of 

matrices to optimize variance patterns within a large dataset.
 20, 21

 PCA reduces the dataset 

into fewer dimensions, which can be easily plotted and highlights the differences and 

similarities between samples. Notably, this process does not delete information from the 

dataset; all the original information is retained, just visually simplified. 

A model is a specific set of mathematical equations that describe the reduction of one 

particular dataset. Different models (equations) describe different sets of data. Each equation 

is called a principal component. There can be multiple principal components which best 

describe a particular dataset. These principal components are ranked by how they best 

describe the differences between the samples (PC1, PC2, PC3, etc.). A score is one solution 
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to a principal component. Each sample will have one score for each principal component. If 

two samples are different, they will have two different scores for at least one principal 

component. Typically, one entire dataset will be reduced to two principal components that 

highlight the largest differences between the samples. The scores may be graphed in a 

coordinate plane called a scores plot to visualize how the different samples relate to one 

another.  

 A Q-residuals plot can also be used to compare how the variables (in this case, mass 

spectra) of each of the different brands relate to one another. A model can be created for the 

values of one particular subset of data (such as the mass spectra taken of different ablated 

spots for one particular brand of tape) within the whole dataset. The brand used as the model 

may be compared to all other brands. A plot of the average Q-residuals between the sample 

and model data represents a comparison of the averaged mass spectrum of the sample to that 

of the model. A large numerical Q value indicates the samples differ extensively. A 95% 

confidence interval may be generated from basic Gaussian statistics using the analyzed data 

for each separate model. The 95% confidence interval Q-value may then be plotted onto the 

average Q-residuals plot. Samples lying above the 95% confidence interval line are called 

“distinguishable from the model (to 95% confidence)” and samples lying below the 95% 

confidence interval are said to be “indistinguishable from the model (to 95% confidence).”  

 

Variance, Biplots, and the Iterative Subtraction Process  

Variance is described here as the difference between groups of sample scores 

compared to the span of one single group of scores. Particular variables (in this case, isotope 
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m/z values) that contribute the most to the overall variance between samples may be 

identified using a biplot and a process called iterative subtraction.  

Iterative subtraction is a process of repeatedly identifying and removing the variables 

and their data which contribute the most variance to the model sample scores. This process is 

illustrated below for a dataset pertaining to the analysis of the backing side of duct tape 

(Figure 2). PCA makes a model (T0) for that dataset ([d0]) that creates the largest variance 

between groups of samples. In the simplest of forms, PCA can be represented by the 

following: 

T0[d0]      [1] 

 A scores plot (Figure 2) is the visual result of the model applied to that dataset. In 

Figure 2, the majority of the variance (99.93%) in the sample scores is captured by principal 

component 1 (PC 1) leaving only 0.07% of the total variance remaining. PC 2 captures the 

majority of the remaining variance (0.06 %). In this particular scores plot, there are distinct 

groups which correspond to the different brands of duct tape analyzed.  

A biplot can be used to determine which variables (m/z values) contribute the most 

variance to the observed separation of sample groupings.
 22

 To create a biplot, the same 

model used to make the scores plot, (T0), is applied to the set of isotopic m/z variables 

themselves ([M0]). These variables will have their own scores for each principal component, 

which in turn may be plotted. 

T0[M0]     [2] 

The plot of To[M0] is overlaid onto the scores plot to form a biplot. A biplot is a visual 

representation showing which isotopes have the largest contribution to the variance between 
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samples. Isotopes which lie furthest from the origin of the biplot were most influenced by the 

model and therefore contribute the most to the variance between the samples in the dataset.  

Figure 3 is the biplot determined from the data used in the scores plot (Figure 2) for 

the backing side of duct tape. The isotope furthest from the origin is m/z 27 or 
27

Al. In this 

example, 
27

Al is the only discernible isotope that is separated from the origin. The signal for 

27
Al contributes the most to the observed differences between the samples (Figure 2). Other 

elements could also be important, but the scale is such that only 
27

Al stands apart. 

In order to determine which other isotopes contribute significant variance, the data 

corresponding to Al and the Al variable itself were removed from both the dataset and the 

m/z variables. Data for all isotopes of each element that contributed significant variance were 

eliminated to avoid confusion between minor isotopes of larger variance contribution and 

major isotopes of lower variance contribution. The first discernible element(s) removed are 

considered to be the first order variance; in this case, Al is the only element removed as the 

first order variance. 

 In Figure 3, the points for the isotopes other than 
27

Al cluster around the origin of the 

biplot.  The process of applying a new model (T1) to the new dataset (d1) to maximize the 

variance between the samples, and then forming a new biplot from the remaining isotope m/z 

variables was repeated with the 1
st
 order data and variables removed.  

T1[d1]   scores plot (Figure 4)  [3] 

     T1[M1]  biplot (Figure 5)  [4]  

A second model (T1) may be applied to the new dataset for these remaining elements ([d1])  
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and a second scores plot (Figure 4) was plotted. In Figure 4, various tape samples are still 

separated, even though the data for the most distinctive element (
27

Al) have been removed. 

A second biplot (Figure 5) may be constructed by overlaying axes of the remaining 

isotopes onto the scores plot. The points in Figure 5 corresponding to isotopes 
24

Mg, 
115

In, 

56
Fe and 

76
Se may be discerned from the large group of points and elements. These four 

elements make up the second order of variance. These signals comprise most of the 

remaining variance, thus, the biplot process identifies the elements most responsible for the 

observed differences between samples. Next, the data for these 2
nd

 order elements were 

removed.  

          T2[d2]   scores plot (Figure 6)  [5] 

 T2[M2]  biplot (Figure 7)  [6]  

A third scores plot (Figure 6) was created using the edited model (T2) and dataset ([d2]). The 

third scores plot in Figure 6 indicates that there is much less variance between samples as 

there are much fewer distinct groupings of separate samples. The third biplot (Figure 7) that 

was constructed shows which elements make up most of the remaining variance; 
52

Cr, 
48

Ti, 

49
Ti, 

63
Cu, and 

65
Cu. 

This process of iteratively subtracting the data and elements which contribute the 

most amount of variance is repeated until the new model no longer distinguishes between the 

different samples. Figure 8 is a scores plot after data corresponding to elements in the first 

three orders of variance (Al 1
st
 order; Mg, Fe, Se and In 2

nd
 order; and Ti, Cr and Cu 3

rd
 

order) have been removed. Distinct groupings of the samples cannot be visualized in Figure 

8, indicating there is little variance left between the samples. In this example, isotopic signal 
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data for the remaining 47 elements either does not vary from sample to sample, or 

corresponds to low-level noise fluctuations from the instrument.  

At this point, the removed data were combined into a final dataset [df] upon which a 

final model (Tf) was applied. Data for the m/z values other than these identified in the 1
st
 – 

3
rd

 orders were not present in [df]. 

Tf[df]   final scores plot (Figure 9) [7] 

The final scores plot in Figure 9 is very similar to the initial scores plot (Figure 2), 

indicating that only the data from elements contained in the first three orders of variance 

were necessary to accurately compare this set of samples.  

This iterative subtraction technique was used to determine which elements contribute 

most to the observed variance between samples of two kinds of the tape (duct and electrical), 

both adhesive and backing sides. Elements were removed and grouped in order of decreasing 

contribution to the variance between the brands until the various samples could no longer be 

distinguished. In the case of all tapes analyzed, only three consecutive orders of element 

classification using scores plots and biplots were necessary. 

 

Duct Tape, Backing Side 

 Figure 9 is the final scores plot (Tf[df]) for measurements taken from the backing side 

of four separate brands of duct tape after elements in the 1
st
, 2

nd
, and 3

rd
 orders of variance 

were identified from the biplot process. The separations in scores of one group from those of 

members of a different group indicate that the samples within the first group can be 

distinguished from the second group based on the acquired mass spectra. Points on the scores 

plot which appear to overlap indicate the samples are not distinguishable from one another 
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based upon the acquired mass spectra.  

  Biplots were constructed from the scores data and the iterative subtraction technique 

was applied. The elements found in the orders of variance table (Table 3) correspond to the 

elements which contribute the most variance between the different brands. Aluminum is a 

bulk additive in duct tape to achieve the silver hue of the backing.
 17

 If Al is present in all 

duct tapes, it is not expected to be distinctive. However, the high variance in Al abundance 

between different duct tape brands indicates that different manufacturers add Al in widely 

varying amounts to give the tape silver hues that are distinct from other manufacturers’ 

products. Al is also typically added to the adhesive side of duct tapes as kaolinite 

(Al2Si2O5(OH)4) during the manufacturing process to add volume, reinforce the rubber 

adhesive or add color.
 17

 Magnesium likely comes from talc (Mg3Si4O10(OH)2), which  is 

added to duct tapes for strength and to make them water repellent. Titanium likely originates 

from TiO2, which may leak into the backing side from the adhesive side, as it is a common 

component in duct tape adhesives.
 17

 Iron could be present from tape contact with metal parts 

during the manufacturing and packaging process or may have been an inorganic additive by 

the manufacturers. The origins of In and Se are unclear. 

Figure 10 is the average Q-residuals plot derived from the scores after the three orders 

of variance (Table 3) were combined. The separation in the variables is almost identical to 

those of the scores plot constructed prior to the iterative subtraction technique (data not 

shown). Scores for the subtracted elements of all brands were compared to those of the model 

brand. All average Q-values for each sample compared to each model are above the 95% 

confidence interval. The average Q-residuals plot in Figure 10 indicates that the backing 

sides of all brands of duct tape are distinguishable from one another to 95% confidence.   

http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Hydroxide
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Duct Tape, Adhesive Side 

 Figure 11 is the scores plot for the adhesive side of duct tape using data only for 

elements from the first three orders of variance. This plot is similar to the original scores plot 

(not shown) that includes all data taken for all variables. Table 4 lists the orders for the 

elements; Al, Fe, Cu, Se, and In contribute the most variance between the brands on the 

adhesive side of duct tape. Again, Al is included as an element which contributes much 

variance in the first order. Large amounts of Al on the adhesive could be contamination from 

contact with the backing side while the tape was rolled up, or from unintentional sampling of 

the backing side while ablating the adhesive side. Due to the thinness of the adhesive layer, 

unintentional sampling of the backing side while ablating the adhesive side or vice versa 

could have been possible even though it was not specifically observed. 

There are distinct groupings of ablated spots associated with each of the four brands 

in the scores plot in Figure 11. These scores were compared to one another using an average 

Q-residuals plot (Figure 12). In the Q-residuals plot (Figure 12), all points lie above the 95% 

confidence interval indicating all brands are distinguishable from one another to 95% 

confidence. 

 

Electrical Tape, Backing Side 

Figure 13 is the scores plot for the backing sides of electrical tape using only those 

elements identified by the iterative subtraction technique. Table 5 lists elements contained in 

the first three orders of variance for the backing side of electrical tape. From Table 5, Pb and 

Sb contribute the most variance between the brands. Pb was once used in electrical tape as 

plasticizer.
 17
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 The amount of Sb detected could be from antimony oxide (Sb2O3), which is a 

common inorganic additive to electrical tape backing.
 17

 Titanium is another common 

inorganic additive to electrical tapes, which can be incorporated as titanium oxide (TiO2);
 17

 

however, its abundance was found to vary less than Sb and Pb between the brands analyzed. 

 The orders of variance listed in Table 5 indicate that ultra-trace elements such as Mo 

and Bi contribute to the variance in the scores plots. These elements are easily recognizable, 

vary between the brands, and could be transferred to tape by roller contact during the 

manufacturing process. Molybdenum and Bi have not been measured in electrical tapes in 

previous studies (such as those from Goodpaster
 6

 and Mehltretter
 4

) possibly because they 

are not known additives in the bulk manufacturing process. This information regarding Bi 

and Mo content could have otherwise been overlooked were it not for the sensitivity and 

elemental coverage of ICP-MS and the large data management of PCA combined with the 

iterative subtraction technique.   

These additives were found to be three of the handful of elements which contributed 

the most to the variance between different brands for the backing side of electrical tape. Each 

manufacturer of electrical tape could have its own “recipe” of additives, making brand 

comparison easier. 

 From Figure 14, the average Q-residual values for all brands fall above the 95% 

confidence value when compared to models created from each brand. This indicates all 

brands of the backing side of electrical tape analyzed here are distinguishable from one 

another to 95% confidence.  
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Electrical Tape, Adhesive Side 

 Figure 15 is the scores plot for the adhesive side of electrical tape. This side of 

electrical tape is usually a thin layer of adhesive that is unevenly painted or sprayed onto the 

backing. This layer is so thin that is difficult to ablate without sampling the backing side as 

well. Thus, results from the adhesive side are likely to contain elements from both the 

adhesive and backing sides.   

Figure 16 is the average Q-residuals plot for each brand of tape. When Plymouth 

brand tape is used as the model, that brand cannot be distinguished from UL and Super 33 to 

95% confidence. 

The corresponding scores plot for these four brands (Figure 15) shows why. At first 

glance, the scores for each brand of tape seem to be easily distinguishable from one another.  

However, the scores for Plymouth brand (blue squares) are well spread out, pushing the 95% 

confidence interval value further out to encompass the points of both UL and Super 33 

scores.  

When Super 33 is used as the model, the Q-residuals values for the other brands (Old 

Super 33, UL, and even Plymouth) are distinguishable to 95% confidence. The scores for 

Super 33 brand tapes cluster very close in one region of the scores plot, making the 95% 

confidence interval very small. Scores from other brands do not fall within the 95% 

confidence interval for Super 33 brand tapes, even though they are in close proximity. The 

scores for UL brand behave similar to those of Super 33. Although the average Q-residual 

values indicate that UL, Super 33 and Plymouth brands are indistinguishable from one 

another to 95% confidence, Figure 16 does show that Super 33, Old Super 33 and UL brands 

are distinguishable from one another to 95% confidence. These results highlight the 



www.manaraa.com

48 
 

  

importance of using different sets of results as the model to gain a full understanding of all 

brands. 

 The iterative subtraction of elements contributing the most variance to the backing 

side of these brands was performed and elements corresponding to the first three orders of 

variance may be found in Table 6. Given the nature of the adhesive side application and the 

difficulty in analyzing solely the adhesive side, it is difficult to make any conclusions 

regarding those elements which contribute the most variance to the adhesive side only. 

 

CONCLUSION 

 An iterative subtraction technique was used to identify the elements that contributed 

the most variance to the distinction between different brands of tape in conjunction with a 

multivariate statistical data analysis technique such as PCA. A successful head-to-head 

elemental analysis of the backing and adhesive sides of duct tape was demonstrated using 

iterative subtraction applied to PCA. This method was applied to both the backing and 

adhesive sides of duct tape. All brands of duct tape analyzed here were distinguishable from 

one another.  

From Tables 3 and 4, the Al signal is captured in the 1
st
 order variance in both the 

adhesive and backing sides of duct tapes. This indicates that the amount of Al varies greatly 

in duct tapes. The level of Al in could be used as a quantitative diagnostic to rapidly 

differentiate between different brands of duct tape. 

The method described here was also applied to both sides of electrical tape. The 

technique was only successful at distinguishing all brands from one another for the backing 
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side. However, analysis for the adhesive side highlighted the importance of varying the set of 

results that are used as the model. Additionally, it is likely that all brands could not be 

distinguished from one another for the adhesive side of electrical tape due to difficulties 

sampling only the adhesive. The very thin, uneven nature of the adhesive side on electrical 

tape could have been a limiting factor of accurately analyzing this side.   

 PCA in conjunction with iterative subtraction to determine elemental variance 

contribution has been shown here to be useful in distinguishing between different brands of 

tapes. This method has been shown to identify important elements that are not immediately 

obvious from mass spectra these distinctive elements are not necessarily the most abundant 

ones. The process provides extra information of potential forensic value. 

The use of biplots in addition to PCA may serve as an additional tool for forensic 

scientists when performing trace elemental analysis of tapes. The method used here could 

also be applied to other forms of evidence. Similar trace elemental analysis studies of other 

common forms of evidence collected at crime scenes such as paints, and glass could be 

useful to forensic scientists.  

Similarly, the merits of femtosecond laser ablation as a sampling technique for ICP-

MS over that of nanosecond laser ablation have been shown to decrease fractionation and 

melting effects caused by sample heating.
 22

 Femtosecond ablation could be advantageous to 

tape, which is very thin and prone to melting. Utilization of such a laser with the technique 

described here could yield additional important tools for accurate analysis.   
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TABLES 

Table 3 List of pressure sensitive tapes analyzed 

 

Tape Identifier Manufacturer 

Duct  

Duck 

3M 

Nashua 

Staples 

 

ShurTech Brands, LLC 

3M Company 

Tyco Adhesives 

Staples, Inc. 

Electrical  

Super 33 

Old Super 33 

 

 

Plymouth 

UL 

 

3M Company 

3M Company 

(manufactured before 

2000) 

Plymouth Rubber Co. 

Ningbo Universal Tools 

Co, LTD 
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Table 4 Instrument and laser parameters for the analysis of duct and electrical tapes 

 

ICP-MS Instrument ELEMENT 1 (Thermo, inc.) 

nsLaser used for ablation of brand 

comparison 

CETAC LSX 500 Nd:YAG 

Operational wavelength 

Laser energy 

Frequency 

Spot size 

Raster speed 

266 nm 

12.1 mJ pulse
-1 

20 Hz 

100 µm 

350 µm sec
-1

 

  

Sampler and skimmer cones Ni, H configuration (Thermo, inc.) 

Sample gas 1.06 L Ar min
-1

 

RF Power 1150 W 

Outer/auxiliary gas stream 16.00/1.16 L Ar min
-1

 

Torch position, ion optics Optimized for maximum sensitivity and stability
 

Scan mode  

        dwell/settling time 

Peak jump, 10 points per mass, 10 ms dwell time, 

2.1 ms settling time 

Acquisition 

        Runs/passes 

 

3 runs/1 pass 

Elements measured (medium 

resolution) 

 

Li, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 

Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, 

Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, 

Gd, Ho, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, 

Bi, Th, U 
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Table 5 Variance contribution of isotopes to the model for the backing side of duct tape. 

Signals for these isotopes were used to create the scores plot in Figure 9. 

 

Order of Variance Isotopes 

1
st
 

27
Al 

2
nd

 
24

Mg, 
56

Fe, 
76

Se, 
78

Se, 
113

In, 
115

In 

3
rd

 
46

Ti, 
47

Ti, 
48

Ti, 
49

Ti, 
52

Cr, 
53

Cr, 
63

Cu, 
65

Cu 

 

 

 

Table 4 Variance contribution of elements to the model for the adhesive side of duct tape. 

Signals for these isotopes were used to create the scores plot in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Order of Variance Isotopes 

1
st
 

27
Al, 

56
Fe, 

63
Cu, 

65
Cu, 

76
Se, 

78
Se, 

113
In, 

115
In 

2
nd

 
24

Mg, 
46

Ti, 
47

Ti, 
48

Ti, 
49

Ti 

3
rd

 
31

P, 
55

Mn, 
52

Cr, 
53

Cr, 
86

Sr, 
88

Sr 
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Table 5 Variance contribution of elements to the model for the backing side of electrical 

tape. Signals for these isotopes were used to create the scores plot in Figure 13. 

Order of Variance Isotopes 

1
st
 

121
Sb, 

123
Sb, 

206
Pb, 

207
Pb, 

208
Pb 

2
nd

 
46

Ti, 
47

Ti, 
48

Ti, 
49

Ti, 
92

Mo, 
95

Mo, 
96

Mo, 
98

Mo, 
135

Ba,
 137

Ba 

3
rd

 
56

Fe, 
66

Zn, 
68

Zn, 
76

Se, 
78

Se, 
86

Sr, 
88

Sr, 
209

Bi 

 

 
Table 6 Variance contribution of elements to the model for the adhesive side of electrical 

tape. Signals for these isotopes were used to create the scores plot in Figure 15. 

Order of Variance Isotopes 

1
st
 

46
Ti, 

47
Ti, 

48
Ti, 

49
Ti, 

56
Fe, 

121
Sb, 

123
Sb, 

206
Pb, 

207
Pb, 

208
Pb 

2
nd

 
31

P, 
66

Zn, 
68

Zn, 
76

Se, 
78

Se, 
135

Ba,
 

137
Ba, 

140
Ce, 

142
Ce 

3
rd

 
51

V, 
52

Cr, 
53

Cr, 
63

Cu, 
65

Cu, Zr, 
86

Sr, 
88

Sr, 
118

Sn, 
120
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FIGURES 

 
Figure 3 Mass spectra for one adhesive side sampling for two brands of duct tape. a. 

corresponds to the spectrum measured for the first sampling of Duck brand duct tape and b. 

corresponds to the spectrum measured for the third sampling of Nashua brand duct tape.  
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Figure 4 Scores plot for the backing side of duct tape. All data collected corresponding to all 

elements measured was used to create the scores plot shown above. The numbers in the 

parentheses indicate the amount of variance captured in the principal component. The model 

was based on all data collected for all elements measured. The point labeled “3M b” was an 

extra point analyzed at the end of the experiment to monitor instrumental drift. 
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Figure 5 Biplot for the backing side of duct tape showing the 1st order of variance. This plot 

was achieved by overlaying the variable axes onto the scores plot found in Figure 2. 

Variables (in this case isotope masses, blue squares) which contribute the most variance to 

the separation of the samples (red triangles) lie farther away from the origin. Isotope mass 

27, corresponding to Al, contributes the most variance to the sample scores.  
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Figure 6 Scores plot for the backing side of duct tape after the element(s) corresponding to 

first order variance has been removed. 
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Figure 7 Biplot showing the 2nd order variance for the backing side of duct tape. Variables 

(isotope masses, blue squares) contributing the most variance to the sample scores (red 

triangles) are labeled above. Isotope mass 24 corresponds to Mg, 115 corresponds to In, 76 

and 78 correspond to Se, and 56 corresponds to Fe. 
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Figure 8 Scores plot with data corresponding to the 1st and 2nd orders of variance removed 

for the backing side of duct tape. 
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Figure 9 Biplot showing the 3nd order variance for the backing side of duct tape. Variables 

(isotope masses, blue squares) contributing the most variance to the sample scores (red 

triangles) are labeled above. Isotope mass 48 corresponds to Ti, 52 corresponds to Cr, and 

both 63 and 65 correspond to Cu. 
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Figure 10 Scores plot for the backing side of duct tape after data for elements corresponding 

to the first three orders of variance have been removed. 



www.manaraa.com

62 
 

  

 

Figure 9 Final scores plot for the backing side of duct tape using data only from elements in 

the 1st, 2nd and 3rd orders of variance. 
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Figure 10 Average Q-residuals plot for the backing side of duct tape. The black line denotes 

the 95% confidence interval for each model. 
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Figure 11 Scores plot for the adhesive side of duct tape. The numbers in the parentheses 

indicate the amount of variance captured by each principal component. The model was based 

on elements contained in the first three orders of variance. The point labeled “3M a” was an 

extra point analyzed at the end of the experiment to monitor instrumental drift. 
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Figure 12 Average Q-residuals plot for the adhesive side of duct tape. The black line denotes 

the 95% confidence interval for each model. 
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Figure 13 Scores plot for the backing side of electrical tape. The numbers in the parentheses 

indicate the amount of variance captured in the principal component. The model was based 

on elements contained in the first three orders of variance (Table 5). 



www.manaraa.com

67 
 

  

 

Figure 14 Average Q-residuals plot for the backing side of electrical tape. The black line 

denotes the 95% confidence interval for each model.  
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Figure 15 Scores plot for the adhesive side of electrical tape. The numbers in the parentheses 

indicate the amount of variance captured in the principal component. The model was based 

on elements contained in the first three orders of variance. 
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Figure 16 Average Q-residuals plot for the adhesive side of electrical tape. The black line 

denotes the 95% confidence interval for each model. 
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INTRODUCTION 

During excavation, a variety of pigments (Table 1) collectively weighing 

approximately 8 kg, was recovered from La Belle’s hull.  The pigments were located 

amidships in the main hold and in the aft hold. While the majority may represent the contents 

of Box 9 (Artifact No. 5110), others were found in a variety of contexts, including Cask 10, 

and a very small amount contained in a bark bag in the ship’s aft hold (Artifact No. 10312, 

Pigment E).  

The pigments vary in color and texture, including a brilliant red, a rust red, and a 

sandy yellow.  They were collected during fieldwork and later transferred to storage at the 

Corpus Christi Museum of Science and History for curation and future analysis.  Elemental 

analysis determined a majority of the pigments contain different amounts of vermilion 

(HgS/cinnabar), which was used extensively by the French and other explorers in North 

America as a trade item.  Except for one pigment (pigment F), all the vermilion samples were 

adulterated with iron or red lead, a very common practice at the time.  Other pigments 

present are likely ochre (Fe2O3).  Two samples were not analyzed for this study but are 

similar in appearance to the vermilion-containing pigments. 
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Use and Composition of Vermilion 

Vermilion has been used as a pigment since antiquity.  It is referred to several times 

in the Bible (New American Standard Bible, Jer. 22:14, Ezek. 23:14) as a paint pigment, 

alluded to in the Odyssey as a pigment for ship paint,
 1

 and scientifically documented on two 

Ptolemaic-era Egyptian masks.
 2

 While not known to be on shipwreck sites other than La 

Belle, in the context of New World exploration it was commonly carried by explorers and 

colonists as a trade or gift item.   

In 1701, the d’Iberville expedition took 80 livres (roughly 39 kg) of vermilion to 

Louisiana, 
3
 and vermilion was a common gift item on that expedition.  In 1765 along the 

Great Lakes, one pound of vermilion was worth two beaver pelts, roughly the same as eight 

quarts of rum.
 4

  Vermilion remained a staple of exploratory trade into the nineteenth century, 

when Lewis and Clark brought two pounds.
 5

   

On the La Salle expedition, vermilion was used as both a gift and trade item, carried 

in lots consisting of “hatchets, knives, awls, glass beads, vermilion, and several other 

things...”. 
6
 Vermilion is an intense red, much brighter than the rust-colored ochre available 

in the New World.  Thus, this would have been an attractive luxury item for native New 

World residents. 

As a naturally occurring mineral pigment, vermilion is known as cinnabar (HgS) and 

is found within mineral assemblages in epithermal systems throughout the world. Epithermal 

mineralization occurs in relatively low temperatures, ranging from 50-300
o
C

 7, 8
 and in 

environments close to the surface, usually within the first 800 meters (Figure 1).
 7, 9

 This 

particular environment of formation is also preferred by a suite of other minerals including 

pyrite (FeS), marcasite (FeS), sphalerite ((Zn,Fe)S), galena (PbS), chalcopyrite (CuFeS2), 
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jamesonite (FeSb6S14), stibnite (Sb2S3), realgar (As4S4), orpiment (As2S3),  and argentite 

(Ag2S).
 9

 Epithermal systems, are known for their concentrations of elements and heavy 

metals such as Pb, Zn, Hg, Ag, Au, Sb, Cu, Se, Bi, U, and Sb (Figure 1).
 9, 10, 11

  

Epithermal systems are almost always associated with volcanism or plutonism, as the 

original sulphic aqueous brine is derived from magmatic sources, and solutes are gained from 

the magma, gases from the magma, and the host rock itself.
 7, 12

 The sulfur in the system is 

derived from the intrusive body releasing SO2 which then travels either with the magmatic 

brines from the intrusive body itself, is mixed with deeper aquifers that interact directly with 

the plutonic body, or from meteoric waters near the surface (Figure 1). 

 As the brine travels from the source of magma emplacement, it requires a transport 

system to bring the brine and dissoved minerals to the surface. This is usually accomplished 

by fault planes or fracture networks. The fluids are pushed  towards the surface by the 

convection of the magma emplacement and the relative buoyancy.The cooling of the fluids 

results in the precipitation of certain minerals at particular temperature regime.
 7, 9

 The 

different precipitation temperatures and relative concentrations of compounds within the 

brine  dictate what mineral assemblages are present at particular pressure, depth, and 

temperature regimes.  

The formation of cinnabar is also closely linked to hotsprings, indicating that a B2 

type mixing of meteoric waters is the most common mode of formation. This also indicates 

that the associated minerals will be most commonly marcasite and stibnite
 13

 and should be 

expected in any natural sample containing cinnabar.  Because cinnabar and other epithermal 

minerals are formed close to the surface, mining is less costly, and in cases such as in 

underwater plutonism and volcanism, hotsprings, and geysers, mineralization is possible 



www.manaraa.com

76 
 

  

within the first 100 meters of rock at high temperature hydrothermal alteration zones such as 

in the Western Pacific floor.
 14

  

The two most economically-valuable zones in a hydrothermal system are where the 

base and precious metals are precipitated, usually in the higher temperature regime of the 

mesothermal system. This results in mainly Au, Ag, and Cu being precipitated in areas such 

as the brecciated zones where fault planes converge (Figure 1).
 9

 This mode of precipitation 

is what forms the main gold-bearing veins found in the Sierra Nevada mountains in 

California, and the vein gold deposits found throughout Alaska.  

Depending on the country rock and type of magma (felsic, mafic), different mineral 

assemblages will be present in differing concentrations and percentages. However, there are 

always certain accessory ores and minerals that are associated with cinnabar, as is seen in 

Figure 1. 

Because of the process of aqueous circulation, origin of brines, and deposition 

circumstances, it is exceedingly difficult to get any large quantity of any certain material in 

pure form with no inclusions or adulturations from the surrounding host rock.  Again, any 

naturally occurring cinnabar should have the other aforementioned associated minerals 

occuring alongside.  

Mined cinnabar can be ground into powder and used directly as a dye (in which case 

it is “natural“ vermilion). However, the many accessory minerals invariably contained in 

natural vermilion create an impure pigment, and so a method for creating synthetic vermilion 

was created which produces a pigment free from these natural impurities. A Dutch 

manuscript from the seventeenth century describes the “Dutch process” of making synthetic 

vermilion.  The process, described in great detail, involves cooking pure mercury (derived 
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from natural cinnabar) and pure sulfur.
15

 As injurious to health as this process must have 

been, it created vermilion free from any impurities, containing only mercury and sulfur.   

Due to the expense of the synthetic method, vermilion produced in that fashion was 

frequently adulterated with brick dust, ochre, or red lead.  The 15th century painter Cennini 

advises: “always buy vermilion unbroken, and never pounded or ground. The reason? 

Because it is generally adulterated, either with red lead or with pounded brick.” 
16

 In 1758, 

Robert Dossie
  17

 (45) writes that it is “very usual, dare I say general, for dealers to 

sophisticate vermilion with red lead,” and details methods for detecting this fraud.  Likewise, 

in 1773 lead is implicated as an adulterant, affecting vermilion’s drying properties.
 18

 The 

more adulterated pigments would cost less, as they required less of the expensive pure 

mercury. 

 

RESULTS AND ANALYSIS 

As a means to determine if the pigments from La Belle were vermilion, and to 

discover their purity, elemental analysis was conducted to determine the elemental makeup 

of the material.  As the fraudulent pigment salesmen cited in primary literature knew, other 

similarly colored substances, such as magnetite (Fe2O3, iron (III) oxide, red ochre) or red 

lead (Pb3O4, lead tetroxide) can easily be mistaken for vermilion. Pigment samples found on 

La Belle were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The 

instrument was first described by Houk et al.
 19

 at Iowa State University and has uses in 

environmental studies of water quality, trace analysis in forensic science, purity 

determination of silicon wafers used in technology manufacturing, and many other areas. 
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Twelve pigment samples were analyzed using ICP-MS; sample proveniences are 

illustrated in Figure 2.  Samples still wet with seawater were air dried so that water would 

slowly evaporate from the solid.  

ICP-MS is a sensitive chemical analysis technique wherein a plasma (i.e., a high 

temperature electrical discharge) acts as a source of sample ionization. ICP-MS was chosen 

to analyze the samples over other elemental analysis techniques due to its low limits of 

detection (LOD). It is common to analyze samples with an analyte (the substance being 

measured) concentration in the low ppb (parts-per-billion) range. For some elements in 

certain conditions, LOD as low as ~1 ppt (part-per-trillion) can be achieved. ICP-MS also 

provides isotopic data on the elements present in the sample whereas competing elemental 

instrumentation usually only provides information on the particular element present. 

However, ICP-MS does not provide information on the chemical form of the elements 

present. Instead of detecting HgS (vermilion), ICP-MS can only detect the presence of Hg
 
or 

S. ICP-MS is capable of measuring multiple isotopes rapidly. A caveat to solution-based 

ICP-MS, the kind of analysis performed here, is that it does not provide spatial information 

within a single analyzed sample because the entire sample is evenly mixed into the solution. 

The plasma breaks up a sample into singly-charged atomic ions using numerous 

collisions. To create this plasma, a high voltage radiofrequency current is passed through a 

coil, which induces an alternating magnetic field on the inside of the coil. A spark creates 

initial ions from an inert gas (usually Ar, N, or He) that flows through a diffused quartz torch 

at the center of the coil. The alternating magnetic field influences the motion of free electrons 

on the inside of the coil such that the electrons collide with gas atoms, creating intense heat 

and more ions. The resultant gaseous atoms, ions, molecules, and electrons is called a 
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plasma. The temperature of the plasma is approximately 7,000 K, roughly the temperature of 

the surface of the sun, and can vary due to factors such as the elements being measured, the 

number of collisions generated, and other instrumental conditions. The sample and the inert 

sample gas are atomized (broken up) and ionized in the plasma.  

From the plasma, the atomized sample ions are passed into a high resolution 

ELEMENT 1 ICP-MS device (Thermo Inc.) (Figure 3) where they are separated by 

momentum (mass*velocity) using a curved flight tube between two magnet pole pieces 

called a magnetic sector analyzer (Houk 2003). The ions are then processed by the 

electrostatic analyzer (ESA) where they are further separated and refocused onto the detector 

based on their respective kinetic energies (0.5mass*velocity
2
). The particular arrangement of 

the magnetic sector followed by the ESA in the instrument used is called a “reverse Nier-

Johnson” configuration. Using both separation techniques, the resolution is high enough to 

separate chemically different ions at the same nominal mass, such as 
56

Fe
+
 from 

40
Ar

16
O

+
. 

After they pass through the ESA, the ions hit an electron multiplier where the signals are 

amplified and detected. In mass spectrometry, detected ions can have multiple charges and 

data are analyzed based on the mass-to-charge ratio, however, ICP-MS mainly produces 

single positively charged ions due to the conditions in the plasma. Intensities for a given 

mass typically correlate to the isotope mass for the measured element. Polyatomic ions, such 

as 
40

Ar
16

O
+

 occur often and can interfere with isotopes of desired atomic ions (such as 
56

Fe), 

however, this instrument has the capacity to resolve many of these interferences.  

A 50-mg sample of each pigment was dissolved in cleaned, concentrated aqua regia a 

1:3 (v:v) mixture of clean nitric acid [HNO3] and hydrochloric acid [HCl], (Ultrex II, 

ultrapure reagents).  The percentage of the entire sample varied.  In some cases, 50 mg 
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represents a significant portion of the artifact.  In most cases, 50 mg represents only a tiny 

fraction of the hundreds of grams present in the collected sample. Once the pigments were 

dissolved, they were diluted to roughly 10 ppm (parts-per-million) and then to approximately 

10 ppb (parts-per-billion) in an aqueous solution of approximately 2% aqua regia. Pigments 

were dissolved and diluted using nanopure water (18 MΩ, Millipore) in cleaned Teflon 

bottles (which were cleaned via acid vapor washing. Care was taken during the dissolution 

process to retain as much mercury from the samples as possible. Mercury is volatile and at 

high temperatures can be easily lost from open vessels at high temperatures. Pigments were 

thus allowed to slowly dissolve over a period of 12 hours in tightly-sealed containers. 

Samples were analyzed using a Thermo ELEMENT 1 ICP-MS device. Instrument 

parameters are listed in Table 3. In many cases, multiple isotopes were measured for each 

element to confirm the presence of the element, as opposed to a polyatomic interference ion, 

and to check the agreement of the final calculations.  Initially, a full spectrum scan in 

medium resolution (m/∆m=4000) was conducted on both the 10 ppm and 10 ppb sets of 

dissolved vermilion to screen for the elements present. It was determined that the 10 ppb 

solution was too dilute to detect the presence of non-bulk, or trace, elements so the 10 ppm 

solution was used for quantification.  

Raw data were peak integrated, averaged and background subtracted. Elements 

detected in the 10 ppm solutions were quantified by comparing 50 intensity measurements of 

diluted sample isotopes to those of a standard solution with the same solvent composition. 

Arsenic (As) and sulfur (S) were measured using high resolution (m/∆m=10000) due to 

overlapping interference peaks at masses 32 and 75. A list of elements analyzed for 

quantification is below. 
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The measured signals were converted into weight percent in the original solid sample. 

A list of the measured concentrations for each element in the pigments can be found in Table 

2. Standard deviation values (in percent) of 10 consecutive measurements of the analysis are 

also shown. The standard deviations were low for bulk components (such as Hg, Fe and Pb) 

in the pigments. For trace components under 1% of the sample, the standard deviation values 

are larger due to the instability of the signal at lower count rates.  

 

DISCUSSION 

A plot chart illustrates the measured concentrations of all elements found in 

abundance greater than 1% by weight in any of the pigments (Figure 4). Error bars indicate 

the standard deviation (in percent) of 10 consecutive measurements of each isotope; many of 

the error bars are smaller than the plotted points. Table 2 indicates that many elements were 

initially found in the pigments, however the scope of this study was to measure larger bulk 

components (defined here to be 1% (w/w) or greater of the pigment) and not trace or ultra-

trace components. These results shed light on the composition of each pigment, which in turn 

gives information about the artifacts’ origins. 

From the ICP-MS results, it was apparent that none of the more obvious precious 

metals expected to accompany natural cinnabar were present in the pigments, even in small 

amounts.  Attention was then turned to arsenic, a constituent of extremely common accessory 

minerals. Pigment samples were analyzed using high resolution (∆m/m=10000) to resolve 

75
As

+
 from an interference peak of 

40
Ar

35
Cl

+
. No As was detected at a level above the blank 

in any of the pigments when As was measured using high resolution (results not shown). This 

does not however indicate that As was absent in the pigments. Roughly 80% of the medium 
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resolution signal is lost when switching from medium resolution to high resolution on the 

ELEMENT 1, making the limit of detection (LOD) for high resolution roughly 80% higher 

than that of medium resolution. If As is in the sample, it will be in quantities lower than the 

LOD for high resolution. Another caveat of trying to detect As is that As only has a 52% 

ionization efficiency.
 20

 This means that only 52% of the total As is ionized and eligible for 

detection in the instrument.  However, even if only half the As was detected, it still would not 

represent even close to the amount expected in natural cinnabar.  Thus, in the absence of any 

accessory elements, the vermilion on La Belle must be synthetic rather than natural. 

If the pigments were all truly pure vermilion, they would all contain both Hg and S, to 

the exclusion of other elements.  However, this is not the case. A sample of pure vermilion 

has a stoichiometric Hg:S ratio of 1:1.  Table 4 is the molar ratio of Hg/S calculated for all 

pigments, with the exception of pigment C, which was discarded before S content could be 

measured. Ideally, the molar ratio value would be exactly 1; however, this was not observed. 

Most pigments with the largest component being Hg or Pb had a molar ratio (Hg/S) value 

that was less than 1.  Molar ratio values that were less than 1 indicate there was less Hg or 

more S than expected; possibly owing to poor Hg recovery during dissolution, additional S 

contamination that was not originally from the pigment, such as biogenic S, or a combination 

of both.  

It is well-documented that maritime artifacts often contain large amounts of biogenic  

S,
 21, 22, 23

 Bacteria found on the seafloor can reduce sulfate ions found in organic matter to 

hydrogen sulfide, H2S. Dissolved H2S can readily react with reduced S compounds in the 

wood and other artifacts, (such as HgS), and become incorporated into the material itself. 

This process can depend on the concentration of H2S available, how readily the wood is 
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degraded, or the amount of corroding iron, which can serve as a reducing agent of S 

compounds.
 21, 24

  

Molar ratio values greater than 1 (as is the case of pigment F) indicate there was more 

Hg present than expected, less S than expected, or both. All pigments but one contained some 

amount of Hg and S, while L did not contain any Hg at all. 

When all percentages of contributing elements are added together, the resultant value 

does not equal 100% (except for in the case of pigment F). This discrepancy is due to the 

large amount of organic material that was not analyzed. It is difficult to track whether organic 

material came from the pigments themselves or from the ocean, where the pigments sat for so 

long. Silicon (Si) is a main component of sand (SiO2) and was also not measured in these 

samples. SiO2 sediments adding contamination to the pigments from the ocean floor is also 

likely. 

Figure 5 is a plot of the four largest components in each pigment analyzed. Samples L 

and E in Figure 5 contain little- to no Hg, but have a very high percentage of Fe. These two 

pigments were likely magnetite, also known as ochre (Fe2O3), which is difficult to 

distinguish from vermilion without modern analysis techniques. 

Lead (Pb), an adulterant so common as to be general in the seventeenth century, was 

found in many of the samples analyzed.  Most pigments which contained measureable 

amounts of Hg also included measureable amounts of Pb, but usually in a lower quantity than 

Hg. Figure 5 and Table 2 indicate the amounts of Pb present in the pigments. Sample K 

actually contained higher amounts of Pb (30.1%) than Hg (28.0%). Pigments L and E did not 

contain Hg but did contain a very high content of Fe (55.3% and 38.7%, respectively).  

Pigment L is the yellow pigment, and its high Fe content shows that this is yellow ochre 
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(hydrated iron oxide).  These two samples did not contain large quantities of Pb, indicating 

they were not adulterated with Pb.  While Pb is a common contaminant in elemental 

analyses, these high concentrations are not indicative of contamination, but of adulteration 

present in the pigments themselves.  This matches with the historical accounts indicating that 

red lead was ubiquitous as an adulterant. 

In pigment F, there are only very low levels of impurities (such as Mg and Fe) and no 

significant levels of accessory elements. The total percent composition of Hg and S in 

pigment F is 101%. When the impurities are added to the amounts of Hg and S, the total 

percent composition of F is 107%. While this very pure pigment should read 100%, the 

measured value of 107% is within precision of the values of all the elements measured. The 

levels of impurities are low enough to be considered trace, indicating that pigment F is high 

purity vermilion (HgS). The lack of impurities suggests the vermilion was produced using the 

Dutch process. Thus, La Belle’s pigments provide direct evidence for a synthetic origin of at 

least some of the vermilion accompanying French colonial efforts. 

Pigment H did not contain appreciable levels of the elements measured (Fe, Pb, or 

Hg). This particular sample likely contained a higher percentage of organic material (C, N, 

O, etc.) that is removed by acid digestion and thus difficult to determine using ICP-MS. 

Pigment H likely contained a large amount of Si mixed in from the sand on the floor of the 

bay, where the samples had been sitting for over 300 years.  

The sample taken from the bark bag in the aft hold (pigment E) is primarily Fe.  It 

also contained a rather large abundance of chromium (Cr) at 8.52% and nickel (Ni) at 4.18% 

by weight in the original solid. Pigment K similarly contained higher abundances of Cr and 

Ni than many of the other pigments with 3.56% and 1.82%, respectively. However, K 
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contained Hg at 28.0% whereas the Hg concentration of E was less than 1.5% of the original 

mass.  The origin of the high levels of chromium and nickel is not known, and requires 

further research. 

Tantalizingly, both nickel and chromium are found as natural contaminants in parts of 

Quebec,
 24

 suggesting a possible association with native ochre from La Salle’s previous 

journeys to Canada – perhaps the birch bag contains European vermilion mixed with North 

American ochre.  For the moment, this is nothing more than a suggestive possibility, and will 

require further research. 

 

CONCLUSIONS 

The chemical and geological analysis of La Belle’s pigments provides information to 

better understand the larger story of the La Salle expedition.  Of the twelve pigments 

analyzed, nine (pigments A,B,C,D,F,G,H,I,J)  have as their primary coloring agent mercury, 

as opposed to red lead or iron oxide.  Two (pigments E and L) are primarily iron oxide, and 

one (pigment K), is primarily red lead.   

The spatial arrangement of the pigments (Figure 2) reveals that the analyzed pigments 

were primarily clustered together, and mostly found in the vicinity of Box 9.  Those directly 

associated with Box 9 are A,C,K,D,I,G.  While pigments H and J were not directly identified 

as components of Box 9, they are close enough that they may originally have been part of 

this box’s contents.  Pigment F is nearby, but was found associated with Cask 10, a cask 

primarily containing tools and dry goods.   
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Of the three outlying pigments, one (pigment L) is the sample of yellow pigment, and 

is primarily colored with iron.  The other iron-dominant pigment (pigment E) is also an 

outlier.  This is the sample of ochre from in the birch bag, and was in the aft hold, near the 

crew’s presumed living and recreation area.  The final outlier (pigment B) is a mercury-

dominant pigment, and was in the stern portion of the ship, possibly originally in the stern 

cabin. 

Comparing the chemical compositions across different provenience areas presents an 

intriguing line of inquiry.  The large amount of pigment present in and around Box 9 

suggests that this was the expedition’s primary supply. If the La Salle expedition had 

intended their pigment supply to be homogenous in quality, the chemical composition would 

be consistent throughout, which would be indicative of a well-mixed powder.  Instead, the 

pigments in this box have varying amounts of mercury, iron, and lead.  Certainly the pigment 

present in this box is not high-grade vermilion.  All the samples had significant amounts of 

adulterant (lead and iron) compared to their mercury percentage.  In fact, pigment K is 

primarily red lead (30% Pb vs 28% Hg).  The heterogeneous nature of the pigments in Box 9 

shows that there were different grades present in the box, ranging from the relatively high-

quality (pigment A, 60% Hg vs. 5.5% Pb) to the extremely low-quality (the aforementioned 

primarily-lead pigment K).   

The very pure vermilion (pigment F) was in Cask 10, rather than in the trade box.  

This suggests that someone on the expedition was cognizant of the difference in quality, and 

made an attempt to keep this expensive good separate.  While it is impossible to know for 

sure, pigment F may not have been meant for trade, but rather for domestic use.  Outside of 

the trade box and cask 10 pigments, the yellow ochre was kept separately, but still in the 
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main hold.  Perhaps this was a personal supply, or simply a different trade item.  The tiny 

amount of ochre present in the birch bag, along with its location in the aft hold, suggest that 

this was not part of a large trade supply, but was a personal item or keepsake.  Finally, 

pigment B, tentatively associated with the stern cabin, may represent part of the ship’s ready 

“currency”, easily accessible in case of immediate need.   

The absence of the usual accessory elements (such as gold or arsenic) in any of the 

pigments proves that the vermilion used was synthetic, rather than naturally occurring 

cinnabar.  Unfortunately, this also means no geographic origin can be suggested, as would be 

possible with natural cinnabar.  However, it is indicative of a manufacturing process that 

takes natural ore, refines it to pure mercury, recombines that mercury with sulfur to produce 

synthetic vermilion, and then (in all but one case), adulterates the resulting product with 

cheaper lead or iron, suggesting that this trade item underwent a large amount of processing 

before arriving on New World shores. 
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TABLES 

Table 1 Pigments analyzed by inductively coupled plasma-mass spectrometry 

 Pigments Analyzed 

Sample 

ID 

Pigment 

Letter 
Easting Northing 

3335 A 2010 2016 

3385-4 B 2009 2010 

7025 C 2010 2016 

7951 D 2010 2016 

10312 E 2009 2013 

10490 F 2009 2016 

10548 G 2010 2016 

10555 H 2010 2017 

10747 I 2010 2016 

10973 J 2010 2017 

11086 K 2010 2016 

11799 L 2011 2015 
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Table 2 Instrumental parameters for the quantitative ICP-MS measurements 

Instrumental Parameters for the Quantitative ICP-MS Measurements. 

ICP-MS model ELEMENT 1 (Thermo, inc.) 

Sampler and skimmer cones Ni, H configuration (Thermo, inc.) 

Nebulizer 100 µL min
-1

 (Elemental Scientific, 

inc.) 

Sample gas 1.077 L Ar min
-1

 

RF Power 1150 W 

Cool/auxiliary gas stream 16.00/1.16 L Ar min
-1 

Torch position, ion optics Optimized for maximum sensitivity and 

stability 

 

Scan mode  

        dwell/settling time 

Peak jump, 20 points per mass, 10 ms 

dwell time, 2.1 ms settling time 

 

Acquisition (Runs/passes) 10 runs/1 pass 

 

Elements measured (medium 

resolution, unless  otherwise noted) 

S*, Mg, Al, Sc, Ti, V, Cr, Mn, Fe, Co, 

Ni, Cu, Zn, Ga, As*, Rb, Sr, Y, Zr, Mo, 

Ag, Sn, Sb, Te, Ba, Ce, W, Au, Hg, Tl, 

Pb, U 

*Measured in high resolution 
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Table 3 Concentration of Element (%, w/w) in Each Pigment 

  Element Concentration (%) in Each Pigment 

Sample S Mg Cr Fe Ni Hg Pb 

A 11.1 ± 0.8* 0.423 ± 0.017 0.248 ± 0.009 0.627 ± 0.017 0.084 ± 0.005 60.3 ± 1.5 5.58 ± 0.17 

B 1.74 ± 0.18 0.419 ± 0.013 0.044 ±0.002 4.56 ± 0.13 0.021 ± 0.002 7.67 ± 0.18 3.23 ± 0.11 

C N/A 0.057 ± 0.003 0.076 ± 0.006 0.406 ± 0.016 0.028 ± 0.003 53.1 ± 1.9 35.372 ± 1.348 

D 0.0668 ± 0.075 0.305 ± 0.010 0.005 ± 0.001 1.30 ± 0.04 0.002 ± 0.0004 3.44 ± 0.08 0.901 ± 0.024 

E 0.661 ± 0.036 0.092 ± 0.003 8.52 ± 0.26 38.7 ± 1.2 4.18 ± 0.18 1.38 ± 0.04 0.286 ± 0.010 

F 12.0 ± 5.3 2.71 ± 0.16 0.441 ± 0.034 1.92 ± 0.09 0.216 ± 0.021 89.3 ± 5.3 0.831 ± 0.053 

G 2.82 ± 0.22 0.382 ± 0.015 0.072 ± 0.004 2.88 ± 0.08 0.026 ± 0.003 8.23 ± 0.23 3.08 ± 0.11 

H 0.234 ± 0.032 0.031 ± 0.001 0.005 ± 0.0002 0.016 ± 0.0004 0.004 ± 0.0002 1.21 ± 0.03 0.923 ±0.025 

I 8.55 ± 2.1 2.17 ± 0.09 0.211 ± 0.009 0.749 ± 0.023 0.091 ± 0.008 49.6 ± 2.1 15.7 ± 0.63 

J 2.74 ± 0.81 0.237 ± 0.015 0.314 ± 0.021 2.33 ±0.08 0.157 ± 0.013 16.8 ± 0.8 12.5 ± 0.83 

K 7.21 ± 0.79 0.967 ± 0.039 3.56 ± 0.16 17.9 ± 0.6 1.82 ± 0.07 28.0 ± 0.8 30.084 ± 0.941 

L 0.111 ± 0.014 0.076 ± 0.004 0.690 ±0.020 55.3 ± 1.8 0.270 ± 0.017 < blank 0.073 ± 0.005 

* Standard deviation (%, w/w) of 10 consecutive measurements  
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Table 4 Molar ratio (Hg/S) values of each original pigment. 

Molar Ratio (Hg/S) Values of Each Original Pigment  

(The value of pure vermilion, HgS, should be 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample ID Molar ratio (Hg/S) 

A 0.863 ± .015 

B 0.700 ± 0.002 

C N/A 

D 0.814 ± 0.001 

E 0.329 ± 0.0002 

F 1.18 ± 0.06 

G 0.462 ± 0.002 

H 0.819 ± 0.0003 

I 0.918 ± 0.020 

J 0.970 ± 0.008 

K 0.614 ± 0.006 

L Not enough Hg 
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FIGURES 

 

Figure 1: Cinnabar formation processes and accessory elements. 
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Figure 2: Provenience of Pigments.
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Figure 3: Schematic of a reverse Nier-Johnson configuration ICP-MS. Ions are extracted from the plasma through the sampler and 

skimmer cones by the extraction lens. The beam of ions are focused and accelerated to the magnetic sector analyzer where they are 

separated based on momentum. These separated ions are further separated based on kinetic energy and refocused to the electron 

multiplier detector by the electrostatic analyzer (ESA). 
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Figure 4: Elemental composition of the analyzed pigments. Only elements which contained 

over 1% by mass (w/w) of any pigment are shown. 
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Figure 5: Percent (w/w) of mercury (Hg, diamonds), lead (Pb, circles), iron (Fe, squares) and 

sulfur (S, line) content in 12 pigment samples. 
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Chapter 5: General Conclusions 

 
The work discussed here showcases three fields in which ICP-MS may be applied to 

analyze samples. Many of these applications highlight the continued growth of ICP-MS in an 

expanding number of fields.  

Public safety is a main concern throughout the world today. Recent studies have 

indicated that there are surprising amounts of toxic elements, such as As, in food because 

they have largely gone unchecked and unregulated. Measurements of these toxins must be 

performed in order to determine global limits to keep the world food supply safe for human 

consumption.  

A technique was developed and reported as a new tool for forensic scientists. There is 

limited sample destruction when a laser is utilized, which can preserve a large portion of the 

sample for additional analyses on the same piece of evidence. Combining additional 

statistical methods with the sensitivity of LA-ICP-MS can rapidly identify trace components 

in evidence that may otherwise be overlooked. Additionally, statistical techniques and LA-

ICP-MS may be employed to rapidly determine if a piece of evidence from a crime scene can 

be distinguished from similar evidence collected elsewhere. 

ICP-MS was also applied to the field of archaeology to identify pigments found at the 

site of a 325+ year-old shipwreck. Elemental analysis of these samples revealed clues to the 

common practice of trade that in the late 1600s, which was often dishonest and the products 

were unsafe. Many of the pigments intended for trade were adulterated with Pb to cheapen 

them, as learned 325 years later using modern science. Additionally, modern knowledge of 
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vermilion (HgS) reveals that the product itself was not safe for human exposure and certainly 

adulterating it with Pb made it even more harmful.  

ICP-MS is one of the most sensitive useful tools for elemental analysis. A deeper 

understanding of the exact composition of various samples using ICP-MS can help scientists 

assist in setting new public safety standards in the present, provide new techniques for the 

future, and learn life in the past. The work highlighted here demonstrates that ICP-MS is a 

versatile technique that has led to even broader acceptance in an increasing number of fields.  
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